
An Overview of Real-Time Disk Scheduling Algorithms

S.Y. Amdani* and M.S. Ali**
*Department of CSE, Babasaheb Naik Collge of Engineering, Pusad, (MS)

**Prof. Ram Meghe College of Engineering and Management, Badnera, Amravati, (MS)

(Received 14 Feburary 2011, 13 March 2011 Accepted)
ABSTRACT : Real-time disk scheduling plays an important role in time-constraints applications. The real time
database system depends not only on the strict data consistency requirements but also on the time at which the
results are produced. Due to rigorous timing requirements for error free output, data must be accessed under
real-time constraints. Therefore how to maximize data throughput under real-time constraints poses a big
challenge in the design of real-time disk scheduling algorithms. Numbers of algorithms are proposed to schedule
real time transactions in order to increase the overall performance. In this paper we have presented overview of
various Real-Time disk scheduling algorithms.

Keywords : Real-time, DBMS, Deadline, Scheduling, Transaction.

I. INTRODUCTION
In the information age, information spreading worldwide

through Internet, and other medium, is bulk and changing con-
stantly and dynamic in nature. As our society becomes more
integrated with computer technology, information processed
for human activities necessitates computing that responds to
requests in real-time rather than just with best effort. In fact,
Database Management systems have entered the Internet Age.
If too many users approach for information, then this degrades
the system performance. The degradation may cause delay
and trouble for particular end user in accessing the informa-
tion. Accessing information in easy way and within certain
time limit, by keeping its freshness, assessing user's require-
ments and then providing them information in time is impor-
tant aspect.

Conventional databases are mainly characterized by their
strict data consistency requirements. Database systems for
real-time applications must satisfy timing constraints associ-
ated with transactions.

Real time data base systems combine the concepts from
real time systems and conventional database systems. Real
time systems are mainly characterized by their strict timing
constraints. Conventional databases are mainly characterized
by their strict data consistency requirements. Thus, real time
database systems should satisfy both the timing constraints
with data integrity and consistency constraints.

Typically, a timing constraint is expressed in the form of a
deadline, a certain time in the future by which a transaction
needs to be completed. In real-time database systems, the cor-
rectness of transaction processing depends not only on main-
taining consistency constraints and producing correct results
but also on the time at which a transaction is completed. Trans-
actions must be scheduled in such a way that they can be
completed before their corresponding deadlines expire.

Example applications that handle large amounts of data
and have stringent timing requirements include telephone

switching radar tracking and others. Arbitrage trading, for ex-
ample, involves trading commodities in different markets at
different prices. Since price discrepancies are usually short-
lived, automated searching and processing of large amounts
of trading information are very desirable. In order to capitalize
on the opportunities, buy-sell decisions have to be made
promptly, often with a time constraint so that the financial
overheads in performing the trade actions are well compen-
sated by the benefit resulting from the trade

The goal of transaction and query processing in real-time
databases is to maximize the number of successful transac-
tions in the system. [1-5]

A. Disk Scheduling Problem

In a disk-based database system, disk I/O occupies a major
portion of transaction execution time. To service a disk re-
quest, several operations take place. First, the disk head must
be moved to the appropriate cylinder (seek time). Then, the
portion of the disk on which the disk page is stored must be
rotated until it is immediately under the disk head (latency
time). Then, the disk page must be made to spin by the disk
head (transmission time).

Queues build up for each disk because the inter-arrival
time of the disk requests can be smaller than the time
required by the disk to service a disk request. Disk
scheduling involves a careful examination of the pending disk
requests to determine the most efficient way to service the
disk requests.

The disk scheduling problem involves reordering the disk
requests in the disk queue so that the disk requests will be
serviced with the minimum mechanical motion by employing
seek optimization and latency optimization. [6-7]

II. OVERVIEW OF EXITING ALGORITHMS

There are some ordinary I/O scheduling algorithms as
following: FCFS (First Come First Serve) is the simplest strat-
egy, for which the I/O request is served in first come first serve

International Journal on Emerging Technologies 2(1): 126-130(2011) ISSN : 0975-8364
et

Amdani and Ali 127

sequence. SCAN is also called elevator algorithm, in which
the disk arm moves in one direction and serves all the requests
in that direction until there is no farther request. The disk arm
then changes its scan direction and serves that direction re-
quest. C-SCAN is the circular SCAN algorithm, which is the
same as SCAN except that after serving the last request in the
scan direction, the disk arm returns to the start position with-
out serving any request and then begins another scanning.
SSTF (shortest seek time first) simply selects the request clos-
est to the current disk arm position for service. [3]

In 1973 Liu and Layland [8][9] suggested the most popu-
lar real time disk scheduling algorithm Earliest Deadline First
EDF. In EDF transactions are ordered according to deadline
and the request with earliest deadline is serviced first. The
EDF algorithm is good when the system is lightly loaded, but
it degenerates as soon as load increases. Critical task may not
get priority over non-critical tasks because the closeness of
deadline is only deciding factor.

Pierre G. Jansen in 2003 [10] suggested a algorithm EDF
with inheritance EDFI combination of EDF and deadline inher-
itance over shared resources. It can manage scheduling and
dispatching very efficiently. The scheduler manages the set of
admitted tasks using two queues and a stack. The Wait Queue
holds tasks awaiting their release. When a task gives up the
processor or reaches its deadline, it is put on this queue, from
which it will be transferred to the next queue when it is re-
leased. The Released Queue holds processes that have been
released but have not yet run. This queue is maintained in
deadline order, earliest deadline first. The Run Stack holds the
tasks that have already run; the currently running task is at
the top of the stack and the tasks below it were preempted by
the tasks immediately above them. But it is appropriate for
those systems that have to work with limited resources.

In 2006 Wenming Li [11] proposed algorithm group-EDF,
or gEDF, where the tasks with ''similar'' deadlines are grouped
together (i.e., deadlines that are very close to one another),
and the Shortest Job First (SJF) algorithm is used for schedul-
ing tasks within a group. The algorithm tends to favor smaller
jobs and thus it does not always guarantee fairness. Also the
algorithm needs to sort the jobs in each group, which could
incur more overhead during execution.

Carey, M. J. , Jauhari, R. and Livny, M. in 1989[12][9] sug-
gested P-SCAN Priority-Scan, in which all the requests in the
I/O queue are divided into multiple priority levels. The SCAN
algorithm is used within each level, which means that the disk
will serve any requests in the current priority level until there
is no more request in this level. When each disk service is
completed, the scheduler will check to see whether a disk re-
quest with higher priority is waiting for service. If there is, the
scheduler will switch to that higher level. In this algorithm, the
request with shortest seek time from the current disk arm posi-
tion is used to determine the scan direction. It will have better
I/O performance when there is only a little priority level. This
algorithm has a small think time and makes good use of the

disk bandwidth. Nevertheless, it can lead to unbounded star-
vation.

Abbott suggested a real-time disk scheduling algorithm
in 1990[13][9], called Feasible Deadline SCAN (FD-SCAN). In
this algorithm, the track location of the request with earliest
feasible deadline is used to determine the scan direction. The
deadline is feasible if it is estimated to be met. That is, the
deadline of the request is greater than the current time plus its
service time, which can be determined by the current disk arm
position and the request's track location. So in the scheduling
point, all requests are examined to determine which has the
earliest feasible deadline. After the scan direction is selected,
the disk arm will move toward that direction and serve all re-
quests along the direction. This algorithm has been found to
do well in terms of response and disk utilization but has high
overhead. Potentially, it will have to reevaluate the feasibility
criterion at the end of each block access.

To improve the disk-seek time, SCAN-EDF algorithm was
proposed by Reddy and Wylie in 1993[14]. The SCAN-EDF
disk scheduling algorithm combines seek optimization tech-
niques and EDF in the following way. Requests with earliest
deadline are served first. But, if several requests have the same
deadline, these requests are served by their track locations on
the disk or by using a seek optimization scheduling algorithm
for these requests. But the efficiency of this algorithm relies
on the number of requests that have the same deadline.

To overcome this problem, in 1998 [15] R. 1.Chang, W K.
Shih, and R. C. Chang proposed Deadline-Modification-SCAN
(DM-SCAN) that suggests the use of maximum-scannable-
groups compute the suitable request group for seek-optimiz-
ing with guaranteed real-time requirements for rescheduling.
The DM-SCAN identifies and reschedule the maximum-
scanable-group repeatedly. In this algorithm, request dead-
lines are reduced several times during the process of resched-
uling to preserve EDF schedule.

Unlike DM-SCAN, Reschedulable-group-SCAN (RG-
SCAN) suggested by H. P. Chang, R. I. Chang, W. K. Shih, and
R. C. Chang in 2002[16], does not require its input disk re-
quests to be sorted by their deadlines. It also forms larger
groups without any deadline modification.

In SCAN-EDF, DM-SCAN and RG-SCAN algorithms re-
scheduling is only possible within a local group of requests.
H.-P. Chang in 2007 [17] suggests Global Seek-optimizing Real-
time (GSR) disk scheduling algorithm that groups the EDF
input tasks based on their scan direction. These tasks are
moved to their suitable groups to improve the system perfor-
mance in terms of increased disk throughput and decreased
number of missed deadlines. GSR schedules are always fea-
sible if the input real-time disk requests are EDF feasible se-
quence. But with an infeasible input, it is very unlikely to have
a feasible output. This is due to the fact that after each re-
grouping of input tasks, GSR checks the feasibility of the new
schedule. If the new schedule is infeasible, GSR algorithm ig-
nores the movement and selects another request to regroup

128 Amdani and Ali

and this continues until it reaches the last request.

In 2009, Myung Sub Lee [18] proposed a new real-time
disk scheduling algorithm based on the insertion technique
and a two-way scan technique. The research is composed of
insertion technique that can insert inconsecutive request into
proper SCAN groups when deciding SCAN groups and SCAN
merge technique that can merge consecutive SCAN groups,
and two-way SCAN technique that can decide the direction of
SCAN in an effective way. But in this technique there are prob-
lems in deciding SCAN groups and service direction of SCAN.

S. Chen, J. A. Stankovic, J. F. Kurose, and D. Towsley [19]
in suggested two better I/O scheduling algorithms in real-time
system, which are SSEDO (shortest seek and earliest deadline
by ordering) and SSDEV (shortest seek and earliest deadline
by value). They maintain a queue sorted according to the ab-
solute deadline of each request. There is a window for the
queue, if window size is m, the first m requests in the queue
will have the smallest deadline.

In SSEDO algorithm, the scheduler selects one of the re-
quests from the window for service. In the scheduling rule,
each request in window is given a weight that is increment
sequentially. The request with minimum value by weight mul-
tiplying the distance between the current disk arm position
and the request position is scheduled. The value is also called
the priority of request. If these are more than one request with
the same priority value, the request with earliest deadline is
selected. Clearly the priority of each request will be changed
as the disk arm moves.

In SSEDV algorithm, the scheduling rule is mainly the same
as the SSEDO, but the way of calculating priority is different.
In SSEDO algorithm, the scheduler uses only the ordering
information of request deadlines. The SSEDV uses the differ-
ences between deadlines of successive requests in the win-
dow i.e. choose the request with minimum value for service
(remaining lifetime of request i.e. length of time between cur-
rent time and request deadline)

 The SSEDO and SSEDV use the time constraint and the
disk service time to make decision, so they can have better
performance than the other variants of SCAN. They also have
been proved that they significantly improve the performance
of real-time system and are easily to implement. This algorithm
has been found to do well in terms of response time and disk
bandwidth utilization but has high overhead.

Cheng peng in 2000 [20] suggested an improvement on
SSEDV, M-SSEDV (Multiple queues SSEDV). There are many
disk I/O task queues, each of which is used for a disk. In every
queue, the SSEDV algorithm is used, by choosing a perfect
scheduling parameter to get the best performance. If one task
is scheduled, when it waits for the arrival of the data, it can be
put into sleep status. It will be waked up when the data arrives.
The scheduler will choose a task from other queues by SSEDV.
So many I/O tasks can be scheduled in parallelism. If a task
has been scheduled, the other task in the same queue must

not be scheduled until the original task is finished. This algo-
rithm has an overhead of choosing the task from different
queues and putting the task in different status.

Zhao Yuehua in 2010 [21] suggested MDTS (Multi-Dy-
namic Trans Scheduling). MDTS consider three types of trans-
actions hard real time, soft real time and non real time. At the
arrival of transaction, the system checks the type of transac-
tion, if it is a hard real-time transaction, the module will sus-
pend lowest priorities of non-real time or soft real-time trans-
actions to meet the requirements; else if it is the soft real-time
transaction then suspending non-real-time transaction to the
requirements. For the different types of transactions, when a
new one gets into the corresponding ready queue, It needs to
dynamically adjust the priorities of the transactions in the ready
queue. Since different types of transactions have different
ways to calculate the priority, it dynamically adjusts priorities
only in the corresponding type of ready queue. The problem
with MDTS is it considers non real time transaction, since
there are three types of transaction overhead of calculating
priorities by three ways. Also for MDTS Access Control is
required to determine the space in the ready queue.

In 2010 [22], Zhongcheng Yu, Qianzhu Shi and Chao Liu
proposed Buffer-Controller-EDF (BC-EDF). Scheduler is de-
composed into two components feedback controller and tra-
ditional EDF scheduler. The feedback controller is used to
predict the share of the buffer cache overflow/underflow. An
EDF scheduler is used to select the most suitable request to
send to avoid buffer overflow/underflow. But it gives average
performance in predictable workloads.

III. CONCLUSION

In this paper we have discussed overview of various real
time disk scheduling algorithms. The above discussions illus-
trate lack of performance isolation provided by a disk schedul-
ing algorithm. Research on disk scheduler is required so that it
can properly account for multiple outstanding I/O requests
and guarantee real-time constraints for both outstanding and
pending real-time requests.

REFERENCES
[1] Ben Kao and Hector Garcia-Molina "An Overview of Real-

Time Database Systems", in proceedings of NATO Advanced
Study Institute on Real-Time Computing. St. Maarten, Neth-
erlands Antilles, Springer-Verlag, 1993.

[2] Gyanendra Kumar Gupta, Shubha Jain, Vishnu Swaroop and A
K Sharma "Resource Scheduling in Mobile Distributed Real
Time Database Systems: A New Perception For Operating
Systems", Proceedings of the 4th National Conference;
INDIACom-2010.

[3] Stuart Shih, Young-Kuk Kim, and Sang H. Son "Performance
Evaluation of a Firm Real-Time Data Base System" , IEEE,
1995.

[4] Richard S. Gray "A Study of Disk Performance Optimization"
Thesis, East Tennessee State University, 2000.

[5] Lars Reuther Martin Pohlack "Rotational-Position-Aware
Real-Time Disk Scheduling Using a Dynamic Active Subset

Amdani and Ali 129

(DAS)" Proceedings of the 24th IEEE International Real-
Time Systems Symposium, Cancun, Mexico, December 2003.

[6] Sameh Mohamed Ibrahim Elnikety "A Real-Time Disk Sched-
uling Algorithm for Multimedia Storage Servers" Thesis, Al-
exandria University, 1999.

[7] Arezou Mohammadi and Selim G. Akl "Scheduling Algorithms
for Real-Time Systems" Technical Report No. 2005-499,,
This work was supported by the Natural Sciences and Engi-
neering Research Council of Canada, 2005.

[8] C. L. Liu and James W. Layland "Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment"
Journal of the Association for Computing Machinery, Vol
20, No. 1, pp. 46-61, 1973.

[9] Yifeng Zhu "Evaluation of Scheduling Algorithms for Real-
Time Disk I/O", 2002.

[10] Pierre G. Jansen, Sape J. Mullender, Paul J.M. Havinga, Hans
Scholten "Lightweight EDF Scheduling with Deadline Inherit-
ance", Technical Report TR-CTIT-03-23, Centre for
Telematics and Information Technology, University of
Twente, Enschede. ISSN 1381-3625, 2003.

[11] Wenming Li, Krishna Kavi , Robert Akl, " A non-preemptive
scheduling algorithm for soft real-time systems", 2006 .

[12] M. J. Carey, R. Jauhari, and M. Livny. "Priority in DBMS
resource scheduling." Proceedings of the Fifteenth Interna-
tional Conference on Very Large Data Bases, pages 397-410,
1989.

[13] R. Abbott and H. Garcia-Molina. "Scheduling I/O requests with
deadlines: a performance evaluation". Proceedings of the Real-
time Systems Symposium, pages 113-124, 12, 1990.

[14] A. N. Reddy and J. Wyllie. "Disk scheduling in multimedia I/O
system". Proceedings of ACM Multimedia'93, Anaheim, CA,
pages 225-234, 8, 1993.

[15] R. 1. Chang, W K. Shih, and R. C. Chang, "Deadline-modifica-
tion-scan with maximum scannable-groups for multimedia real-
time disk scheduling," in Proceedings of the 19th IEEE Real-
Time Systems Symposium, pp. 40-49, 1998.

[16] H. P. Chang, R. I. Chang, W. K. Shih, and R. C. Chang,
"Reschedulable-Group-Scan Scheme for Mixed Real-Time/
Non-Real-Time Disk Scheduling in a Multimedia System,"
The Journal of Systems and Software vol. 59, no. 2, pp. 143-
152, 2002.

[17] H.-P. Chang, R.-I. Chang, W.-K. Shih, and R.-C. Chang, "GSR:
A global seek-optimizing real-time disk-scheduling algorithm,"
The Journal of Systems and Software, vol. 80, no. 2, pp. 198-
215, 2007.

[18] Myung Sub Lee, Kwang-Jung-Kim and Chang-Hyeon-Park,
"Real Time Disk Scheduling Algorithms based on two-way
scan Techniques", Eight International Conference on Scalable
Computing and Communications, 2009.

[19] S. Chen, J. A. Stankovic, J. F. Kurose, and D. Towsley. "Per-
formance evaluation of two new disk scheduling algorithms
for real-time systems" Technical Report UM-CS-1990-077,
University of Massachusetts, Amherst, 1990.

[20] Cheng peng Zhou xinrong Zhang jiangling, "The Design of
High Performance Control System in RAID", IEEE Pacific
Rim Conference on Communications, Computers and Signal
Processing, 2000.

[21] Zhao Yuehua and Qiu Jing, "A new multi-dynamic priority
real-time database scheduling algorithm", IEEE 2nd Interna-
tional Conference on Computer Engineering and Technology,
2010.

[22] Zhongcheng Yu, Qianzhu Shi and Chao Liu, "Research on
Multimedia Transmission Controlled Scheduling Algorithm on
Internet", Journal of Communication and Computer, ISSN
1548-7709, USA, Volume 7, No.2 (Serial No.63), 2010.

